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To leverage computer vision technology to improve the accuracy of tourism demand forecast-
ing, a model based on deep learning with time series imaging is proposed. The model consists
of three parts: sequence image generation, image feature extraction, and model training. In the
first part, the tourism demand data are encoded into images. In the second part, the convolu-
tion and pooling layers are used to extract features from the obtained images. In the final part,
the extracted features are input into long short-term memory networks. Based on historical
tourism demand data, the model for forecasting future tourism demand can be obtained. The
performance of the proposed model is experimentally assessed through comparing against
seven benchmark models.
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Introduction

Tourism demand forecasting is of great interest to scholars and tourism practitioners alike (Song et al., 2019; Wu et al., 2020).
Accurate forecasts of demand can ensure that resources are efficiently allocated, and allow for rapid adjustments to the supply of
tourism products and services as well as the avoidance of imbalances between supply and demand (Li et al., 2019; Li, Ge, et al.,
2020; Silva et al., 2019; Zhang, Li, Muskat, & Law, 2020; Zhang, Li, Muskat, Law, & Yang, 2020). For example, if large numbers of
tourist arrivals are predicted, then managers can plan accordingly, for instance in their staffing arrangements. Conversely, if small
numbers of tourist arrivals are predicted, then managers might formulate pricing strategies or develop attractive tourism pack-
ages. Accurate demand forecasting is also of interest to the government at both national and local level, to inform the planning
of both tourist attractions and transportation facilities (Bi, Liu, Fan, & Zhang, 2020; Li et al., 2017; Li et al., 2021). Therefore,
the development of accurate tourism demand forecasting models is a critical issue.

Unlike time series data in other fields, tourism demand time series data have obvious complexity characteristics, such as non-
linearity, periodicity, and volatility, because the tourism industry itself is characterized by seasonality and uncertainty. Tourism
demand time series data do, though, contain a wealth of features that are helpful for forecasting. Although many tourism demand
forecasting models have been proposed (Song et al., 2019), most of them can establish only a one-dimensional mapping relation-
ship between each observation within the lag order and the observation to be predicted. Therefore, some important features em-
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bedded in the tourism demand time series data cannot be fully exploited, which may lead to the loss of some important informa-
tion in the process of forecasting, such as the temporal correlations and patterns between each observation within the lag order.
Thus, to get more accurate forecasts, as many of the features embedded in time series as possible should be utilized in the fore-
casting model.

As a kind of models that can automatically extract features from data, deep learning has recently been developed for the fore-
casting of tourism demand (Bi, Liu, & Li, 2020; Law et al., 2019). Because long short-term memory (LSTM) networks can automat-
ically learn the lag order of data, nearly all the deep learning models applied in tourism demand forecasting are LSTM networks
(Bi, Liu, & Li, 2020; Law et al., 2019). It should be noted that convolutional neural networks (CNNs), a deep learning technology
with good performance in the field of computer vision, has been ignored in this field. However, CNNs can not only extract some
features from the data that are different from those extracted by LSTM networks, but also outperform LSTM networks in many
fields, especially in image processing and computer vision (Radenović et al., 2018; Zhang et al., 2017). One of the main reasons
why CNNs are not used in tourism demand forecasting is that they cannot fully extract data features from one-dimensional tour-
ism demand data.

Recent studies have shown that more of the features embedded in the original time series can be retained by transforming
one-dimensional time series data into two-dimensional images in some way. More importantly, CNNs can then be used to extract
deeper features from the obtained images. Therefore, if the one-dimensional tourism demand data can be transformed into two-
dimensional image data, and the obtained images are mined and processed by CNNs, then the advantages of CNNs in image pro-
cessing will be fully realized, and the effective and diverse features embedded in the original tourism demand data can be fully
extracted. Further, if these extracted features can be utilized by LSTM networks, then the advantages LSTM networks in dealing
with sequence data can also be brought into full play, and thus better forecasts can be expected.

In this study, a model for tourism demand forecasting based on deep learning and time series imaging is proposed. It consists
of three parts: (1) sequence image generation, (2) image feature extraction, and (3) model training. In part 1, the tourism de-
mand data are first converted into the data type required by deep learning, and then the converted tourism demand data are
encoded into images. In part 2, the convolution and pooling layers are used to extract features from the obtained images. In
part 3, the extracted features are input into LSTM networks, and the whole model can be trained based on actual tourism demand
data. Future tourism demand is forecast by the trained model. The present experimental study draws on real-world tourism de-
mand data from two tourist attractions and compares the proposed new model against seven benchmark models to verify its
effectiveness.

Related work

Tourism demand forecasting

The development of accurate tourism demand forecasting models is a critical issue. To this end, many such models have been
proposed (Song et al., 2019). They can be broadly divided into three categories: time series models, econometric models, and ar-
tificial intelligence models (Song & Li, 2008).

Time series models have been the traditional and most widely used models for tourism demand forecasting (Athanasopoulos
et al., 2011; Chan et al., 2005; Cho, 2001; Shahrabi et al., 2013). They include the autoregressive moving average model and ex-
ponential smoothing model, and their improved versions (Fildes et al., 2011; Goh & Law, 2002).

The econometric models have been used to capture the causal relationship between the number of tourists and the factors that
influence that number (Shen et al., 2009; Wong et al., 2007; Wu et al., 2017). They include the vector autoregressive model, the
error correction model, the autoregressive distributed lag model, and the system-of-equation model (Assaf et al., 2018; Li et al.,
2006; Song et al., 2003; Turner & Witt, 2001).

Artificial intelligence models are relatively new, but they have proved to be highly accurate in forecasting tourism demand
(Song & Li, 2008). They also have other advantages. For example, they do not require any assumptions to be made about the
data distribution, and have dynamic adaptability and strong nonlinear fitting capabilities (Law, 2000). Several artificial intelligence
models have been developed for tourism demand forecasting (Li et al., 2018). In view of their advantages, the present study fo-
cuses on this category of models.

The artificial intelligence models used for tourism demand forecasting can be divided into two categories on the basis of their
“depth”: shallow learning models and deep learning models (Bi, Liu, & Li, 2020). The former uses an intelligent algorithm with a
simple structure and fewer hidden layers, but usually need to have data features manually constructed (Kon & Turner, 2005).
Shallow learning models have been widely used in tourism demand forecasting since the 1990s, due to their good nonlinear
fitting ability (Law, 2000). They include: multilayer perceptron, radial basis function neural networks, Elman neural networks,
denoised neural networks, and support vector machines (Claveria et al., 2015, 2016; Kon & Turner, 2005; Sencheong & Turner,
2005).

Deep learning models use algorithms with a more complex structure and more hidden layers than shallow learning models
(Kulshrestha et al., 2020; LeCun et al., 2015; Schmidhuber, 2015). They are end-to-end algorithms that can automatically extract
features within a dataset. These models have been successfully applied in many fields, including image recognition and the pro-
cessing of natural language, and, more recently, the forecasting of tourism demand (Bi, Liu, & Li, 2020; Law et al., 2019). For ex-
ample, in view of the problem that a large number of search intensity indices are involved when using search engine data to
forecast tourism demand, Law et al. (2019) proposed a deep learning approach based on LSTM networks.
2



J.-W. Bi, H. Li and Z.-P. Fan Annals of Tourism Research 90 (2021) 103255
It should be noted that there are two main types of deep learning models: convolutional neural networks (CNNs) and recur-
sive neural networks (Schmidhuber, 2015). Nearly all the deep learning models applied in tourism demand forecasting are
recursive neural networks, of which the LSTM networks are the most commonly used (Bi, Liu, & Li, 2020; Kulshrestha et al.,
2020). Tourism demand forecasting models based on CNNs have not been reported. This may be because CNNs cannot fully
extract data features from one-dimensional tourism demand data, which means that the advantages of CNNs cannot be fully
realized. However, CNNs perform better than recursive neural networks in many fields, especially in image processing and com-
puter vision (Radenović et al., 2018; Zhang et al., 2017). If the one-dimensional tourism demand data can be transformed into
two-dimensional image data in some way, and the obtained images are mined and processed by CNNs, then the advantages of
CNNs in image processing will be fully realized, and the effective and diverse features embedded in the original tourism demand
data can be fully extracted. Further, if these extracted features can be utilized by LSTM networks, then the advantages of CNNs
and LSTM networks can be brought into full play, and better forecasts can be expected.

Forecasting using deep learning architectures with time series imaging

In recent years, computer vision technologies have advanced greatly, and they are now gradually being applied in forecasting re-
search. One of the emerging research areas is time series forecasting using deep learning architectures with imaging. Most of the studies
focus on time series classification problems (Hatami et al., 2018; Martínez-Arellano et al., 2019; Wang & Oates, 2015). The main step of
these studies is to first encode time series into images, then to extract features from these images through deep learning, and finally to
classify the time series based on the obtained features. For example, Hatami et al. (2018) proposed amethod for time series classification
based on CNNs and recurrence plots. In the method, time series are first transformed into two-dimensional texture images using recur-
rence plots. Then, a classifier is trained through the CNNs, which learns different levels of representation from the obtained texture im-
ages. The authors verified the validity of themethodwith an experiment based on 20 time series classification datasets. Wang and Oates
(2015) developed a novel framework for time series classification based on tiled CNNs, in which three time series encoding methods
were used: Gramian angular summation fields, Gramian angular difference fields, and Markov transition fields. The effectiveness of
the proposed framework was verified by comparing it with nine state-of-the-art approaches.

Inspired by the above studies, some scholars began to address the regressionproblems, i.e., time series regression forecasting based on
deep learning architectures with time series imaging. There have, though, been few studies on this issue (Li, Kang, & Li, 2020; Zhang &
Guo, 2020). Li, Kang, and Li (2020) proposed a newmethod for regression forecasting with time series imaging and automated features
extraction. In the method, the time series are first transformed into recurrence plots. Then, computer vision technologies are used to
extract local features from the obtained images. According to the obtained features, an averaging model based on nine commonly
used forecast algorithms is proposed. An experimental studywas carried out on a forecasting competitiondataset, and the results showed
that the proposed method performed about as well as other state-of-the-art methods.

Zhang and Guo (2020) proposed an ensemble method for forecasting the hourly consumption of residential electricity. In their
method, related data (e.g., weather conditions and residential building data) are first decomposed into several band-limited in-
trinsic mode functions using variational mode decomposition. Then, the incremental kernel principal components are extracted
from the band-limited intrinsic mode functions by the incremental kernel principal component analysis, which are encoded
into images based on Gramian angular fields. On this basis, a novel ensemble method is proposed to forecast the hourly consump-
tion of residential electricity, where an elitist search strategy of the multi-population genetic and an improved dragonfly algorithm
are developed. The validity of the method is verified by experimental comparison with other state-of-the-art methods.

As noted above, there have been few studies of forecasting using deep learning architectures with time series imaging, as it is
still an emerging research field. More particularly, there has been no research on tourism demand forecasting using deep learning
with time series imaging. Furthermore, the existing studies mainly use a single method (the recurrence plots or Gramian angular
fields) to convert time series into images of a single type, which essentially encodes the time series into black and white images. If
the time series can be encoded into multiple images with various features by different encoding methods, and these images are
regarded as three “Red-Green-Blue” channels of color images, then more information can be extracted and used in forecasting,
thus better predictions can be expected.

Time series imaging

In recent years, deep learning technologies have developed rapidly and have achieved great success in the fields of computer
vision, speech recognition, and the processing of natural language. However, since these technologies do not incorporate a time
axis, their advantages cannot be fully realized in the forecasting of one-dimensional time series. However, if one-dimensional
tourism demand data can be encoded into two-dimensional image data, then the advantages of deep learning in computer vision
can be fully realized, and better forecasts can be expected. To fully extract the various features embedded in the tourism demand
time series data, three methods are adopted here to transform the time series data into images: Gramian angular field (GAF),
Markov transition field (MTF) and recurrence plot (RP). The principles of these three methods are briefly introduced below.

(1) GAF

The main idea of GAF is to encode the time series data as images through the Gramian matrix and polar coordinate systems
(Wang & Oates, 2015). To fully capture the information embedded in the original time series data, the polar coordinates are used
to represent the time series data to determine the elements in the Gramian matrix. A brief introduction to GAF is given below.
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Let X = {x1,x2,…,xN} denote the time series data with N observations, where xn is the nth observation, n = 1, 2, …, N. To avoid
the result being biased by the observation with the largest value, X is first rescaled to the interval [−1, 1] by Eq. (1).
x0n ¼ xn−max Xð Þð Þ þ xn−min Xð Þð Þ
max Xð Þ−min Xð Þ , n ¼ 1, 2, . . . ,N ð1Þ
where xn′ is the rescaled value of xn.
Then, the rescaled data xn′ can be represented as a polar coordinate (ϕn,rn), where ϕn and rn are the angle and radius in polar

coordinates, respectively. (ϕn,rn) can be calculated using Eq. (2):
ϕn ¼ arccos x0n
� �

rn ¼ n
T

n ¼ 1, 2, . . . , N

8<
: ð2Þ
where n and T respectively denote the time stamp and the constant factor for regularizing the span of the polar coordinates.
According to the obtained (ϕn,rn), the element (n′,n″) in the Gramian matrix can be determined by calculating the trigonomet-

ric difference between each observation:
GAFn0 ,n00 ¼ sin ϕn0−ϕn00ð Þ,n0,n00 ¼ 1, 2, . . . ,N ð3Þ
Based on the obtained GAFn′, n″, X = {x1,x2,…,xN} can be converted into an image. The obtained image can well capture the
temporal correlation within different time intervals.
(2) MTF
The main idea of MFT is to convert the time series data into images through the Markov matrix of quantile bins (Wang &
Oates, 2015). MTF preserves time domain information in time series by representing the Markov transition probabilities sequen-
tially. A brief introduction to MTF is given below.

The time series data X = {x1,x2,…,xN} are first classified into Q quantile bins, and each observation xn is assigned to a cor-
responding bin, qm, m = 1, 2, …, Q. Then, a weighted adjacency matrix W = [wmm′]Q×Q can be constructed by counting transi-
tions among these quantile bins along the time axis in the form of a first-order Markov chain. The element wmm′ is determined
by the frequency of a point in the quantile qm′ followed by a point in the quantile qm. Thus, wmm′ can be determined by
Eq. (4):
wmm0 ¼ P xn∈qmjxn−1∈qm0ð Þ
∑m0wmm0 ¼ 1

,m,m0 ¼ 1, 2, . . . , Q
�

ð4Þ
By considering the temporal positions, the weighted adjacency matrix W can be expanded into a MTF matrix D = [dmm′]Q×Q,
where dmm′ is the transition probability of qm → qm′ (i.e., P(qm → qm′)), such that ∑m′dmm′ = 1, m, m′ = 1, 2, …, Q. Finally, by
averaging the pixels in each non-overlapping region, the MTF image corresponding to X can be obtained.
(3) RP
RP is an important method to analyze the periodicity, chaos, and non-stationarity of time series, which provides a way to vi-
sualize the periodicity of trajectories in a phase space (Li, Kang, & Li, 2020; Marwan et al., 2007). It can reveal the internal struc-
ture of time series, particularly in terms of similarity and stability. The RP is especially suitable for the analysis of time series data
drawn from a short period. A brief introduction to RP is given below.

Given a time series X = {x1,x2,…,xN}, an extracted trajectory with m dimensions can be defined as:
x
!
n ¼ xn, xnþτ , . . . , xnþ m−1ð Þτ

� �
,n ¼ 1, 2, . . . ,N− m−1ð Þτ ð5Þ
where τ denotes the time delay.
Then, the RP of X can be determined by calculating the pairwise distance between the trajectories, using Eq. (6):
R n,n0� � ¼ 1, ‖x
!
n−x

!
n0‖≥θ

0, ‖x
!
n−x

!
n0‖<θ

, n, n0 ¼ 1, 2, . . . , N− m−1ð Þτ
(

ð6Þ
where θ denotes the threshold.
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It can be seen from Eq. (6) that R(n,n′) is a binary function. In other words, if the difference between x
!
n and x

!
n0 is greater

than the threshold θ, then a black dot is drawn in the RP image. This binary output in standard RP may cause some information
loss. To capture more information from time series, a modified RP is used in this study, i.e.,
R n,n0� � ¼ θ, ‖x
!
n−x

!
n0‖≥θ

‖x
!
n−x

!
n0‖, ‖x

!
n−x

!
n0‖<θ

, n, n0 ¼ 1, 2, . . . , N− m−1ð Þτ
(

ð7Þ
According to Eq. (7), the modified RP can output more values than the standard RP.
(4) Typical examples of GAF, MTF, and RP images
To show these three kinds of images more intuitively, typical examples of GAF, MTF and RP images are given in Figs. 1–3,
where “Figs. 1(b), 2(b), and 3(b)”, “Figs. 1(c), 2(c), and 3(c)”, and “Figs. 1(d), 2(d), and 3(d)” respectively represent the GAF,
MTF and RP images corresponding to a random time series, a periodic time series, and a “periodic + trend” time series.

In Fig. 1, the distribution of the values in all three types of images corresponding to the random time series show no regularity.
The main difference among these three types of images is the difference of range.

In Fig. 2, the distribution of the values in the three types of images corresponding to the periodic time series shows ob-
vious periodicity. It can be seen that there are some differences in the distribution of the values within these three images.
Specifically, the regularity of the distribution in the GAF and RP images is stronger than that of the MTF image, and the range
values of the GAF and RP images is larger than that of the MTF image. The GAF and RP images are complementary to each
other from the vertical axis to a certain extent, and the value ranges of the GAF and RP images are [−1, 1] and [0, 2],
respectively.

In Fig. 3, the distribution of the values with respect to the three types of images corresponding to the “periodic + trend” time
series shows obvious periodicity and trend. The distribution of the values of the three images is again different. Specifically, the
distribution of the values within the GAF image increases periodically from the lower left corner to the upper right corner; the
distribution of the values in the MTF image shows a periodically decreasing trend with the main diagonal as the symmetry
axis, and a periodically increasing trend with the sub-diagonal as the symmetry axis; the distribution of the values in the RP
image shows a periodically increasing trend with the main diagonal as the symmetry axis.

Methodology

Principle and framework of the model

Tourism demand is affected by a variety of factors, resulting in the obvious complexity characteristics of tourism demand time
series data, such as nonlinearity, periodicity, and volatility. When the existing models are used, the features embedded in the tour-
ism demand time series data cannot be fully exploited and utilized. The reasons are as follows: (1) The traditional models estab-
lish only a one-dimensional mapping relationship between each observation within the lag order and the observation to be
predicted. For example, Fig. 4(a) is a tourism demand time series with six observations. Assuming that the lag order is 5, then
the mapping relationship constructed by a traditional model is shown in Fig. 4(b). If there are relationships between observations
within the lag order, such as temporal correlations and patterns between observations, these relationships may have an impact on
the observation to be predicted, but they are ignored by traditional models. Furthermore, the traditional models can use only a
fixed set of lagged observations for forecasting. However, the temporal dependence (lag order) may vary with circumstance,
and this dynamic feature cannot be captured by traditional models. Thus, to get more accurate forecasts, more features embedded
in time series should be used.

If the tourism demand time series can be transformed into the mapping relationship shown in Fig. 4(c), i.e., the tourism de-
mand time series are encoded into images, then more features embedded in the data can be utilized in the construction of the
model. Then, CNNs, which are very good at image processing, can be used to extract features from the obtained images and
LSTM networks, which are well suited to processing sequence data, can be used to automatically learn the temporal dependence
between the features obtained by the CNNs. Through this process, the advantages of time series imaging in feature extraction,
CNNs in image processing and LSTM networks in sequence data processing can be given full play, the rich deep-seated features
embedded in the tourism demand time series can be fully mined and utilized, thus better forecasts can be expected.

Based on the above analysis, the present study proposes a novel deep learning model for forecasting tourism demand. Its
framework is shown in Fig. 5. The model consists of three parts, i.e., sequence image generation, image feature extraction, and
model training.

Sequence image generation

Tourism demand data has obvious complexity characteristics, such as nonlinearity, periodicity, and volatility. The main pur-
pose of this part is to extract as many as possible of the features embedded in the tourism demand data, through time series
imaging. This is done in two steps: (1) converting the tourism demand data into the data type required by deep learning; and
(2) encoding time series data into images.
5



Fig. 1. Typical examples of GAF, MTF, and RP images for random time series data.
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Fig. 2. Typical examples of GAF, MTF, and RP images for a periodic a time series.

J.-W
.Bi,H

.Liand
Z.-P.Fan

A
nnals

ofTourism
Research

90
(2021)

103255

7



Fig. 3. Typical examples of GAF, MTF, and RP images for time series with periodicity plus a trend.
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(a) Tourism volume time series with 6 observations

(c) Time series imaging(b) Traditional mapping methods

Fig. 4. An example of data conversion.
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(1) Converting the tourism demand data into the data type required by deep learning

Let X = (x1,x2,x3,x4, ...,xT−3,xT−2,xT−1,xT) represent a time series of tourism demand with T observation points, where xt is the
tourism demand at time t, t = 1, 2, …, T. Tourism demand data X are in the form of a time series, but deep learning models re-
quire the data to be in the form of input-output pair sequences. Before the model can be built, it is therefore necessary to convert
X into input-output pair sequences. Let the length of the input sequence be n; that is, n previous observations of tourism demand
are used to forecast the tourism demand of the following (hth) observation, n ∈ {1,2, ...,T − 1}. The value of n should generally be
greater than the period in the tourism demand data X. X can then be converted into sequences of input-output pairs, i.e., Xj → xn+j

−1−h, where Xj = (xj,xj+1, ...,xn+j−1), j = 1, 2, ..., T − n + 1 − h. Xj → xn+j−1−h can be expanded into the following matrix
form:
v1 v2 ::: vn y
x1 x2 ::: xn

::: ::: ::: :::

xj x jþ1 ::: xnþj−1

::: ::: ::: :::

xT−nþ1−h xT−nþ2−h ::: xT−h

2
666666664

3
777777775
!

xnþh

:::

xnþj−1−h

:::

xT

2
666666664

3
777777775
where each row in the left-handmatrix represents an input sequence for the deep learningmodel, and the corresponding element in
the right-hand matrix represents an output.

(2) Encoding time series data into images

To accurately forecast tourism demand, the forecasting model needs to be able to capture the global changes in tourism de-
mand and to fit the local change in tourism demand. The global change in tourism demand is mainly reflected in scale variance,
i.e., the global seasonality and scale (or level). The local change in tourism demand is mainly reflected in the local nonlinear trend,
i.e., the local recurring patterns and temporary relations. Although deep learning models have strong nonlinear fitting capabilities,
they tend to struggle with scale variance. Compared with deep learning models, although some traditional models, such as the
Holt-Winter model, have no nonlinear ability, they are good at capturing the scale variance of tourism demand (Smyl et al.,
2018). If the scale variance of tourism demand can be eliminated by the Holt-Winter model, then the nonlinear fitting ability
of deep learning models can be fully utilized, and better forecasts can be expected. In this study, the Holt-Winter model is adopted
to normalize the data:
x
⌢

t ¼
yt

lt � st
, j ¼ 1, 2, :::, T−nþ 1−h ð8Þ
where x
⌢

t is the normalized and deseasonalized value of xt, which can reflect the local nonlinear trends in tourism demand; yt is the
smoothed value of xt; st are the seasonal correction factors (which reflect the seasonality of tourism demand); and lt is the smoothed
value of the constant part for xt, which reflects the scale of tourism demand.

According to Eq. (8), for each Xj, a corresponding normalized vector can be obtained, i.e., X
⌢

j ¼ x
⌢

j, x
⌢

jþ1, :::, x
⌢

nþj−1
� �

, j = 1, 2, ..., T
− n + 1 − h. To fully extract the various features embedded in the tourism demand time series data, three methods (GAF, MTF,

and RP) are adopted to encode the time series data into images. Thus, using Eqs. (1)–(3), (4), and (5)–(7), X
⌢

j is encoded into a

GAF image, a MTF image, and a RP image, respectively. They are denoted as GAF X
⌢

j

� �
, MTF X

⌢

j

� �
and RP X

⌢

j

� �
, respectively, j = 1, 2,

..., T − n + 1 − h.
9
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Image feature extraction

To extract deeper features from the obtained images, the CNNs, which are very suitable for image feature extraction, are

adopted in this part. Specifically, the convolution and pooling layers are used to extract features from GAF X
⌢

j

� �
, MTF X

⌢

j

� �
and

RP X
⌢

j

� �
, where GAF X

⌢

j

� �
, MTF X

⌢

j

� �
and RP X

⌢

j

� �
are regarded as three channels of an image, j = 1, 2, ..., T − n + 1 − h.

The process of feature extraction using convolution layers is shown in Fig. 6, where the image is regarded as a two-
dimensional matrix. The specific steps of image convolution are as follows: slide the convolution kernel on the image, multiply
the pixel value on the image point by the value on the corresponding convolution kernel, and then add all the multiplied values.
Repeat this process until the convolution kernel slides the entire image. Drawing on Krizhevsky et al. (2017) and Bi, Liu, and Fan
(2020), the mathematical principles are as follows.

Let I# X
⌢

j

� �
denote the image corresponding to X

⌢

j, # ∈ {GAF,MTF,RP}. Without loss of generality, I# X
⌢

j

� �
can be written as an n ×

n matrix, i.e.,
I# X
⌢

j

� �
¼

δ j#
11 ::: δ j#

1k ::: δ j#
1n

::: ::: ::: ::: :::

δ j#
k1 ::: δ j#

kk ::: δ j#
kn

::: ::: ::: ::: :::

δ j#
n1 ::: δ j#

nk ::: δ j#
nn

2
6666664

3
7777775
, j ¼ 1, 2, :::, T−nþ 1−h,n∈ 1, 2, :::, T−1f g:
Let I#S X
⌢

j

� �
be a (k + 1) × (k + 1) submatrix of I# X

⌢

j

� �
, i.e.,
I#S X
⌢

j

� �
k0 : k0þk−1ð Þ,k00: k00þk−1ð Þ

¼
δ j#
k0k00 ::: δ j#

k0ð Þ k00þkð Þ
::: ::: :::

δ j#
k0þkð Þ k00ð Þ ::: δ j#

k0þkð Þ k00þkð Þ

2
664

3
775, k, k0, k00∈Nþ, kþ k0, kþ k00≤n:
Let ck′k″j# denote the convolution feature generated from I# X
⌢

j

� �
k0 : k0þk−1ð Þ,k00 : k00þk−1ð Þ, and ck′k″

j# can be calculated by:
c j#
k0k00 ¼ Θ WC∗I

# X
⌢

j

� �
k0 : k0þk−1ð Þ,k00 : k00þk−1ð Þ

þ b
� �

, k, k0, k00∈Nþ, kþ k0, kþ k00≤n ð9Þ
where Θ denotes the activation function,WC ∈ ℝk×k is the weight matrix of the convolution kernel, ∗ denotes the convolution opera-
tion, and b ∈ ℝ is the bias term.
(a) (b) (c) (d)

Convolution featureConvolution kernel 

Fig. 6. The process of feature extraction using convolution layers.

11



J.-W. Bi, H. Li and Z.-P. Fan Annals of Tourism Research 90 (2021) 103255
According to Eq. (9), the convolution feature of I X
⌢

j

� �
can be obtained, i.e.,
C# X
⌢

j

� �
¼

c j#
11 ::: c j#

1k00 ::: c j#
1 n−kþ1ð Þ

::: ::: ::: ::: :::

c j#
k01 ::: c j#

k0k00 ::: c j#
k0 n−kþ1ð Þ

::: ::: ::: ::: :::

c j#
n−kþ1ð Þ1 ::: c j#

n−kþ1ð Þk00 ::: c j#
n−kþ1ð Þ n−kþ1ð Þ

2
66666664

3
77777775
, j ¼ 1, 2, :::, T−nþ 1−h,n∈ 1, 2, :::, T−1f g:
To explain the calculation process more clearly, an example is given here. The activation function is assumed to be linear,

i.e., Θ(x) = x; the weight matrix of the convolution kernel is WC ¼ 1 0
0 1

	 

, the two-dimensional matrix of an image is

I X
⌢

j

� �
¼

1 2 1 0 0
0 1 3 1 0
0 0 1 1 1
0 0 3 1 0
0 3 1 0 0

2
6666664

3
7777775
, and the bias term is b = 0. According to Eq. (9), the convolution feature of I X

⌢

j

� �
can be determined,

i.e.,
C X
⌢

j

� �
¼

2 5 2 0
0 2 4 2
0 3 2 1
3 1 3 1

2
6664

3
7775:

� � � � 	 


where the 2 in the upper left corner of C X

⌢

j is determined by the sum of the products of the matrix I X
⌢

j
1:2,1:2

¼ 1 2
0 1

and the
weight matrix of the convolution kernel WC ¼ 1 0

0 1

	 

, i.e., 1 × 1 + 2 × 0 + 0 × 0 + 1 × 1 = 2.

Based on the obtained C# X
⌢

j

� �
, to retain the main features, reduce the number of parameters, and prevent over-fitting, the

pooling layer is used. Let P# X
⌢

j

� �
denote the pooling result of C# X

⌢

j

� �
obtained by a f × f filter with stride s, i.e.,
P# X
⌢

j

� �
¼

p j#
11 ::: p j#

1z ::: p j#
1Z

::: ::: ::: ::: :::

p j#
z1 ::: p j#

zz ::: p j#
zZ

::: ::: ::: ::: :::

p j#
Z1 ::: p j#

Zz ::: p j#
ZZ

2
6666664

3
7777775
:

The elements in P# X
⌢

j

� �
can be calculated by two methods, namely maximum pooling and average pooling, which can be de-

termined by Eqs. (10) and (11), respectively.
p j#
zz0 ¼ max c#1þ z−1ð Þ�sð Þ: fþ z−1ð Þ�sð Þ, 1þ z0−1ð Þ�sð Þ: fþ z0−1ð Þ�sð Þ

n o
z, z0 ¼ 1, 2, :::, Z ð10Þ
n o

p j#
zz0 ¼ sum c#1þ z−1ð Þ�sð Þ: fþ z−1ð Þ�sð Þ, 1þ z0−1ð Þ�sð Þ: fþ z0−1ð Þ�sð Þ = f � fð Þ, z, z0 ¼ 1, 2, :::, Z ð11Þ
To illustrate the pooling process more clearly, an example is shown in Fig. 7, where Fig. 7(a) and (b) represent the calculation
process of maximum pooling and average pooling, respectively. Here, the partial matrix shaded red ( ) in the matrix illustrates
Fig. 7. An example of the pooling process.
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Fig. 8. The framework of the LSTM networks.
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the calculation process. In Fig. 7(a), the 5 in P# X
⌢

j

� �
is determined by max{2,5,0,2} = 5. In Fig. 7(b), the 2.25 in P# X

⌢

j

� �
is deter-

mined by (2 + 5 + 0 + 2) ÷ 4 = 2.25.

Model training

Based on the obtained P# X
⌢

j

� �
, a one-dimensional vector with Z × Z elements can be obtained,

i.e., P
!#

X
⌢

j

� �
¼ p j#

11 , :::,p
j#
1z , :::,p

j#
z1 , :::,p

j#
zz , :::,p

j#
ZZ

� �
, through a flatten layer. Since # ∈ {GAF,MTF,RP}, three vectors can be obtained:

P
!GAF

X
⌢

j

� �
¼ p jGAF

11 , :::,p jGAF
zz , :::,p jGAF

ZZ

� �
, P
!MTF

X
⌢

j

� �
¼ p jMTF

11 , :::,p jMTF
zz , :::, p jMTF

ZZ

� �
and P

!RP
X
⌢

j

� �
¼ pjRP11 , :::, p

jRP
zz , :::,pjRPZZ

� �
. Then, by combin-

ing vectors P
!GAF

X
⌢

j

� �
, P

!MTF
X
⌢

j

� �
and P

!RP
X
⌢

j

� �
, a new one-dimensional vector with 3 × Z × Z elements can be obtained,

i.e., P
!

X
⌢

j

� �
¼ p jGAF

11 , :::, p jGAF
zz , :::, p jGAF

ZZ , p jMTF
11 , :::, p jMTF

zz , :::, p jMTF
ZZ ,pjRP11 , :::,p

jRP
zz , :::,pjRPZZ

� �
.

Based on P
!

X
⌢

j

� �
, LSTM networks with j − j′ + 1 time steps can be constructed, where P

!
X
⌢

j−j0
� �

, :::, P
!

X
⌢

j−1

� �
, P
!

X
⌢

j

� �
are the

inputs. The structure of the constructed LSTM networks is shown in Fig. 8(a), and the structure of a module in the LSTM networks
is shown in Fig. 8(b). As can be seen from Fig. 8, the LSTM networks have three gates: a “forget gate”, an “input gate”, and an
“output gate” (Hochreiter & Schmidhuber, 1997). The forget gate is mainly to “remember” important information, and “forget”
useless information, i.e., selectively forget the information from the previous module. Let fj denote the output of the “forget
gate”. fj can be calculated by
f j ¼ σ wf ⋅ h j−1, xj
h i

þ bf
� �

ð12Þ
where wf and bf are the weight matrix and bias vector for the “forget gate”, respectively.
The “input gate” selectively memorizes the information from the current inputs: it retains (“remembers”) any information that

is more important for forecasting. The output of the input gate, denoted ij, can be calculated by
ij ¼ σ wi⋅ h j−1, xj
h i

þ bi
� �

ð13Þ
where wi and bi are the weight matrix and bias vector for that gate, respectively.
The cell state of the LSTM module, which gives LSTM networks their long-term memory function, is denoted cj. Using Eq. (14),

cj is calculated from the obtained fj and ij:
cj ¼ tanh wc⋅ h j−1, xj
h i

þ bc

� �
cj ¼ f j∗c j−1 þ ij∗cj

8<
: ð14Þ
where wc and bc are the weight matrix and bias vector for the cell state, respectively.
13



J.-W. Bi, H. Li and Z.-P. Fan Annals of Tourism Research 90 (2021) 103255
Finally, the “output gate” contains previously input relevant information and determines the value of the next hidden state.
The output of the “output gate”, denoted oj, can be calculated from Eq. (15):
οj ¼ σ wo⋅ h j−1,αj

h i
þ bo

� �
ð15Þ
where wo and bo are respectively the weight matrix and bias vector for that gate.
With cj and oj obtained, the final output of the LSTM module can be calculated using Eq. (16):
γj ¼ οj∗ tanh cj
� �

ð16Þ
Through the above information updating process, the final output of the LSTM networks can be obtained, denoted as O
!

X
⌢

j

� �
, j

= 1, 2, ..., T − n + 1 − h.

With O
!

X
⌢

j

� �
as the input and xn+j−1−h as the output, the functional relationship between O

!
X
⌢

j

� �
and xn+j−1−h can be con-

structed through a full connection layer, i.e.,
xnþj−1−h ¼ Θ WF⋅O
!

X
⌢

j

� �
þ bF

� �
, j ¼ 1, 2, :::, T−nþ 1−h ð17Þ
where Θ denotes an activation function,WF and bF are theweight matrix and bias terms; and ⋅ is amultiplication factor that is applied
to the matrices.

By feeding the actual tourism demand data into the above-constructed model, the relevant parameters can be determined, that
is, the neural network model with actual forecasting ability can be obtained. It should be noted that since the model is trained on
the normalized data, an inverse normalization is needed in the actual forecasting. Let Image(Xj) denote the output of the trained
neural network with inputs Xj−j′, ..., Xj, j, j′ = 1, 2, ..., T − n + 1 − h, j > j′. Then, the tourism demand at time j + h can be ob-
tained using Eq. (18):
y jþh ¼ Image Xj

� �
� lj � s jþh−m ð18Þ
where Image(Xj) reflects the local recurring patterns and temporary relations in tourism demand; lt and sj+h−m respectively reflect
the global scale and seasonality in tourism demand, which are determined by the Holt-Winter model.

It can be seen from Eq. (18) that the proposed model simultaneously considers the scale change in tourism demand, the sea-
sonality change in tourism demand, and the local recurring patterns and temporary relations in tourism demand.

Empirical study

Experimental design

Data
To verify the effectiveness of the proposed model, an empirical analysis is conducted using daily tourist volume at two well-

known attractions in China, Jiuzhaigou and Mount Siguniang. For Jiuzhaigou, the time span is from Jan. 1, 2013 to Oct. 31, 2020,
with 2845 observations (Fig. 9(a)). It should be noted that on Aug. 8, 2017, an earthquake in the scenic area caused great damage
to the park and its surrounding areas. Thereafter, through to Sep. 27, 2019, the scenic area was initially closed and then measures
were taken to limit the number of tourists. Shortly after that, due to the outbreak of COVID-19 in China, the scenic area was
closed again on Jan. 28, 2020 until Mar. 31, 2020. For Mount Siguniang, the time span is from Jan. 2, 2016 to Oct. 31, 2020,
with 1765 observations (Fig. 9(b)). Similarly, with the outbreak of the pandemic in China, the scenic area was closed on Jan.
28, 2020 until Mar. 31, 2020. Therefore, the data for Jiuzhaigou from Aug. 8, 2017 to Mar. 31, 2020 and the data for Mount
Siguniang from Jan. 28, 2020 to Mar. 31, 2020 are not used in the experiment.

To fully verify the performance of different models, two experiments are conducted: (1) forecasting before the onset of the
COVID-19 pandemic; and (2) forecasting during the pandemic. Therefore, each dataset is twice divided into a training set and
a test set, i.e., four training sets and four test sets are obtained, where the time span of two test sets is before the outbreak of
the COVID-19, and the time span of the other two test sets is during the pandemic. The details with respect to the time span
and number of observations for the training set and test set are shown in Table 1.

It should be noted that both long-term and short-term forecasts are important in tourism decision-making. Therefore, it is nec-
essary to compare the performance of different models over different prediction horizons, that is, to compare the performance of
different models in h-step-ahead forecasting, where h is set to 1 and 3 in the experiment.
14



Fig. 9. The daily tourist volume at two famous tourist attractions in China.
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Performance measures
Three measures of performance are adopted: mean absolute deviation (MAE), mean absolute percentage error (MAPE), and

root mean square error (RMSE). They are calculated in the usual way, using Eqs. (19)–(21):
Table 1
The det

Time

Forec

Forec
MAE ¼ 1
T
∑
T

t¼1
∣τt−τ0t ∣ ð19Þ
ails for the training set and test set in each dataset.

of test set Dataset Time span Number of observations

Training set Test set Training set Test set

asting before the outbreak of the COVID-19 Jiuzhaigou Jan. 1, 2013 to
Apr. 1, 2015

Apr. 2, 2015 to
Jun. 30, 2017

821 821

Mount Siguniang Jan. 2, 2016 to
Sep. 15, 2017

Sep. 16, 2017 to
May 31, 2019

623 623

asting during the COVID-19 Jiuzhaigou Jan. 1, 2013 to
Aug. 7, 2017

Apr. 1, 2020 to
Oct. 31, 2020

1680 214

Mount Siguniang Jan. 2, 2016 to
Jan. 28, 2020

Apr. 1, 2020 to
Oct. 31, 2020

1488 214
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Table 2
Optimal n for each model with respect to different values of h.

Models Jiuzhaigou Mount Siguniang

h = 1 h = 3 h = 1 h = 3

SVM n = 9 n = 6 n = 9 n = 12
BPNN n = 15 n = 9 n = 9 n = 9
CNN n = 6 n = 12 n = 12 n = 15
LSTM n = 12 n = 6 n = 6 n = 15
CNN-LSTM n = 6 n = 6 n = 6 n = 9
The proposed model n = 9 n = 15 n = 12 n = 12

Table 3
The opt

Mode

SVM
BPNN
CNN
LSTM
CNN-
The p
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MAPE ¼ 1
T
∑
T

t¼1
∣
τt−τ0t
τt

∣ ð20Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
∑
T

t¼1
τt−τ0tð Þ2

s
ð21Þ

τt and τt′ are the actual and predicted tourist volumes at time t, respectively; T is the total number of predicted samples. Ob-
where
viously, the smaller are the values of MAE, RMSE, and MAPE, the better is the performance of the given model.

Benchmark models and parameter setting
To fully illustrate the effectiveness of the proposed model, three kinds of benchmark models are selected: traditional time se-

ries models, shallow machine learning models, and deep learning models. The first group includes the autoregressive integrated
moving average model (ARIMA) and seasonal autoregressive integrated moving average model (SARIMA); the second group in-
cludes support vector machine (SVM) and back propagation neural network (BPNN); and the last group includes CNN, LSTM,
and “CNN-LSTM”, where “CNN-LSTM” means that the CNN is first used to perform one-dimensional convolution on the time series
to extract features, and then a LSTM network model is built based on the extracted features.

As mentioned in the Methodology section, when forecasting tourism demand with machine learning models, it is necessary to
convert the time series into input-output sequence pairs. An important parameter in this process is the length of the input se-
quence, n, i.e., the tourism demands of n previous observations are used to forecast the tourism demand of the following obser-
vation. Previous studies have shown that n has a significant impact on the performance of machine learning models in tourism
forecasting. Thus, to obtain more reasonable comparisons, the parameter search method is used to determine the optimal n of
each machine learning model in each database with respect to different values of h, where n is set to 6, 9, 12, and 15 in the ex-
periment. The results are shown in Table 2.

In addition, the parameters of ARIMA and SARIMA are directly determined by minimization of the Schwarz criterion and
Akaike information criterion, and the important parameters of other models are determined by the exhaustive grid search tech-
nique. The results are shown in Table 3.

Experimental results

Experimental results using data for the period before the outbreak of the COVID-19
The results using data for the period before the outbreak of the COVID-19 generated by the different models are separately

presented below for one-step-ahead forecasting (h = 1) and multi-step-ahead forecasting (h = 3).
(1) One-step-ahead forecasting
The one-step-ahead forecasting results of the different models for Jiuzhaigou and Mount Siguniang before the outbreak of the
COVID-19 are shown in Table 4. It can be seen that the proposed model significantly outperforms the benchmark models in terms
imal parameters for each model with respect to the two attractions.

ls Jiuzhaigou Mount Siguniang

C = 1000, Gamma = 0.01 C = 500, Gamma = 0.01
Epoch = 1000, Batch size = 16 Epoch = 200, Batch size = 8
Epoch = 100, Batch size = 64 Epoch = 100, Batch size = 128
Epoch = 100, Batch size = 8 Epoch = 200, Batch size = 8

LSTM Epoch = 100, Batch size = 32 Epoch = 100, Batch size = 16
roposed model Number of CNN layers = 2, Number of LSTM layers = 2, Image size = 12, Epoch = 200, Batch size = 16
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Table 4
The results from different models for one-step-ahead forecasting using data for the period before the outbreak of the COVID-19.

Models Jiuzhaigou Mount Siguniang

MAE MAPE RMSE MAE MAPE RMSE

ARIMA 1930.23 18.55 3073.75 617.30 55.97 1069.83
SARIMA 1898.26 18.15 3065.32 542.52 54.43 1039.33
SVM 2405.44 34.71 3325.09 930.89 200.2 1228.82
NN 2192.14 22.27 3357.57 626.59 65.77 1149.52
CNN 2053.38 18.75 3230.2 558.84 51.84 1243.14
LSTM 2243.57 28.16 3326.95 798.04 158.22 1178.10
CNN-LSTM 2265.03 18.88 3610.66 579.14 50.78 1203.71
The proposed model 501.83 4.47 777.11 125.45 9.71 241.33
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of MAE, MAPE and RMSE. Specifically, for Jiuzhaigou, the MAE, MAPE and RMSE of the proposed model are 501.83, 4.47% and
777.11 respectively, which are far lower than the best MAE, MAPE and RMSE obtained by the benchmark models (1915.49,
17.58% and 3073.36); for Mount Siguniang, the MAE, MAPE and RMSE of the proposed model are 125.45, 9.71% and 241.33 re-
spectively, which are far lower than the best MAE, MAPE and RMSE obtained by the benchmark models (542.52, 50.78% and
997.24).

It should be noted that the CNN-LSTM model does not outperform the CNN and LSTM model in some cases. The main reason is
that the number of samples and features used for training the model is relatively small without encoding the tourism demand
time series into images. However, the CNN-LSTM model is required to train more parameters, almost equal to the sum of the pa-
rameters of the CNN and LSTM models. This makes the CNN-LSTM model more prone to over-fitting, resulting in relatively poor
performance. Additionally, the results show that LSTM does not outperform the ARIMA model, which is inconsistent with the
findings of Law et al. (2019). The main reasons are as follows: Law et al. (2019) use a large amount of search engine data as ex-
ogenous variables, which means more features can be learned and utilized by LSTM, and the advantages of LSTM can be brought
into play; in contrast, this paper forecasts tourism demand only from historical time series data, which means fewer features can
be learned by LSTM, and thus the predictive ability of LSTM is not fully utilized.
(2) Multi-step-ahead forecasting
The multi-step-ahead forecasting results using data for the period before the outbreak of the COVID-19 from the different
models are shown in Table 5. It can be seen that the proposed model significantly outperforms the benchmark models in
terms of MAE, MAPE and RMSE in the case of multi-step-ahead forecasting (h = 3). Specifically, for Jiuzhaigou, the values of
MAE, MAPE and RMSE of the proposed model are 2681.57, 23.35% and 4471.71 respectively, which are lower than the best
MAE, MAPE and RMSE obtained by the benchmark models (2897.68, 27.16% and 4497.47); for Mount Siguniang, the values of
MAE, MAPE and RMSE of the proposed model are 658.63, 52.31% and 1616.89 respectively, which are lower than the best
MAE, MAPE and RMSE values obtained by the benchmark models (722.68, 58.8% and 1617.28).

To verify whether the proposed model significantly outperforms the benchmark models without being affected by the out-
break of the COVID-19, the Diebold-Mariano (DM) test is carried out for the one-step-ahead and multi-step-ahead forecasting.
The results are shown in Table 6, which indicates that the proposed model significantly outperforms the benchmark models
with respect to the two attractions at a 99% confidence level, except that the significance level of “the proposed model vs.
CNN-LSTM” on Mount Siguniang is 95%. Therefore, the proposed model is effective in relation to data for the period before the
outbreak of the COVID-19.

Experimental results using data for the period during the COVID-19 pandemic
The results during the COVID-19 pandemic generated by the different models are separately presented below for one-step-

ahead forecasting (h = 1) and multi-step-ahead forecasting (h = 3).
(1) One-step-ahead forecasting
Table 5
The results of different models for multi-step-ahead forecasting using data for the period before the outbreak of the COVID-19.

Models Jiuzhaigou Mount Siguniang

MAE MAPE RMSE MAE MAPE RMSE

ARIMA 2947.30 27.56 4549.09 957.40 104.86 1889.47
SARIMA 2897.68 27.50 4497.47 897.43 94.85 1878.16
SVM 3210.64 40.49 4505.03 1279.56 281.83 1768.86
NN 3245.77 31.91 4733.27 899.33 101.7 1754.59
CNN 3038.67 28.68 4686.88 758.05 68.01 1753.31
LSTM 3534.96 46.95 4747.98 1018.88 198.7 1619.69
CNN-LSTM 2923.79 27.16 4680.49 722.68 58.8 1617.28
The proposed model 2681.57 23.35 4471.71 658.63 52.31 1616.89

17



Table 6
The DM test results for one-step-ahead and multi-step-ahead forecasting using data for the period before the outbreak of the COVID-19.

h Attractions Benchmark models

ARIMA SARIMA SVM NN CNN LSTM CNN-LSTM

1 Jiuzhaigou −17.36⁎⁎⁎ −16.67⁎⁎⁎ −19.84⁎⁎⁎ −18.57⁎⁎⁎ −16.91⁎⁎⁎ −20.40⁎⁎⁎ −18.38⁎⁎⁎

Mount Siguniang −16.00⁎⁎⁎ −8.26⁎⁎⁎ −14.00⁎⁎⁎ −15.49⁎⁎⁎ −12.09⁎⁎⁎ −13.91⁎⁎⁎ −14.51⁎⁎⁎

3 Jiuzhaigou −3.77⁎⁎⁎ −3.58⁎⁎⁎ −10.69⁎⁎⁎ −6.86⁎⁎⁎ −4.48⁎⁎⁎ −12.39⁎⁎⁎ −3.53⁎⁎⁎

Mount Siguniang −6.67⁎⁎⁎ −7.37⁎⁎⁎ −13.00⁎⁎⁎ −7.68⁎⁎⁎ −3.36⁎⁎⁎ −12.78⁎⁎⁎ −2.04⁎⁎

Note: The ⁎⁎ and ⁎⁎⁎ indicate the statistical significance at the 5% and 1% levels, respectively.
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The one-step-ahead forecasting results of the different models for Jiuzhaigou and Mount Siguniang during the COVID-19 pan-
demic are shown in Table 7. It can be seen that the proposed model significantly outperforms the benchmark models in terms of
MAE, MAPE and RMSE. Specifically, for Jiuzhaigou, the MAE, MAPE and RMSE values of the proposed model are 309.67, 5.89% and
462.23 respectively, which are far lower than the best MAE, MAPE and RMSE values obtained by the benchmark models (1142.18,
26.18% and 1993.77); for Mount Siguniang, the MAE, MAPE and RMSE values of the proposed model are 76.18, 13.51% and 154.85
respectively, which are far lower than the best MAE, MAPE and RMSE values obtained by the benchmark models (850.25, 285.11%
and 1361.14).

(2) Multi-step-ahead forecasting

The multi-step-ahead forecasting results during the COVID-19 pandemic from the different models are shown in Table 8. It can
be seen that the proposed model significantly outperforms the benchmark models in terms of MAE, MAPE and RMSE in the case
of multi-step-ahead forecasting (h = 3). Specifically, for Jiuzhaigou, the MAE, MAPE and RMSE values of the proposed model are
2051.84, 41.40% and 3379.93 respectively, which are lower than the best MAE, MAPE and RMSE values obtained by the bench-
mark models (2148.90, 50.99% and 3474.18); for Mount Siguniang, the MAE, MAPE and RMSE values of the proposed model
are 816.53, 97.86% and 1698.71 respectively, which are lower than the best MAE, MAPE and RMSE values obtained by the bench-
mark models (825.58, 194.31% and 1704.01).

To verify whether the proposed model significantly outperforms the benchmark models when applied to the data relating
to the period during the COVID-19 pandemic, the DM test is again carried out for the one-step-ahead and multi-step-ahead
forecasting. The results are shown in Table 9. For one-step-ahead forecasting, the proposed model significantly outperforms
the benchmark models with respect to the two attractions at a 99% confidence level. For multi-step-ahead forecasting, the
proposed model significantly outperforms the benchmark models with respect to the two attractions at least at a 95% con-
fidence level. Therefore, the proposed model is also effective when applied to data relating to the period during the COVID-
19 pandemic.

As can be seen from Tables 7 and 8, most of the models tested here perform worse when applied to data relating to the period
during the COVID-19 pandemic, but the proposed model nevertheless achieves a relatively high forecasting accuracy. The main
reasons for this are as follows. The differences in tourism demand before and during the COVID-19 pandemic are mainly reflected
in changes in seasonality and scale, and in local recurring patterns and temporal correlations.

In terms of seasonality and scale, the pure neural networks are sensitive to the scale variance of tourism demand. The
scale of tourism demand before and during the COVID-19 pandemic changed in a non-periodic manner, which significantly
lowers the accuracy of these models. However, some traditional models, such as the auto regressive model and the Holt-
Winter model, are good at capturing changes in the seasonality and scale of tourism demand, but these models are incapable
of nonlinear fitting. It should be pointed out that the proposed model is essentially a hybrid model composed of Holt-Winter
and deep learning. Specifically, the Holt-Winter model is first used to normalize the tourism demand data to eliminate the
influence of seasonality and scale on deep learning, using Eq. (8). In this way, the noise in the data can be smoothed out, and
Table 7
The results from different models for one-step-ahead forecasting using data for the period during the COVID-19 pandemic.

Models Jiuzhaigou Mount Siguniang

MAE MAPE RMSE MAE MAPE RMSE

ARIMA 1305.92 32.23 2049.22 953.10 206.12 2052.50
SARIMA 1142.18 26.18 1969.56 894.71 197.34 1874.88
SVM 1925.15 68.61 2497.89 1149.13 337.60 2363.91
NN 1160.09 26.91 1993.77 930.22 338.06 1824.20
CNN 1399.32 32.84 2433.79 845.20 194.31 1704.01
LSTM 1590.27 43.32 2502.00 1023.56 246.70 2002.73
CNN-LSTM 1212.65 27.50 2089.63 825.58 280.46 1762.00
The proposed model 309.67 5.89 462.23 76.18 13.51 154.85
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Table 8
The results of different models for multi-step-ahead forecasting using data for the period during the COVID-19 pandemic.

Models Jiuzhaigou Mount Siguniang

MAE MAPE RMSE MAE MAPE RMSE

ARIMA 2255.18 54.47 3566.38 1435.87 509.00 2759.33
SARIMA 2148.90 50.99 3474.18 1332.72 467.87 2562.67
SVM 2492.13 81.79 3573.06 1357.51 736.88 2448.94
NN 2198.35 58.70 3492.81 1268.87 494.40 2487.50
CNN 2249.24 54.81 3796.02 1325.05 514.01 2703.36
LSTM 2647.54 82.94 3840.26 850.25 285.11 1361.14
CNN-LSTM 2159.90 57.78 3639.37 1268.37 558.43 2641.22
The proposed model 2051.84 41.40 3379.93 816.53 97.86 1698.71
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the essential skeleton of the tourism demand data with respect to scale and seasonality can be determined, as reflected in
the second and third terms of Eq. (18), i.e., lj and n. Thus, the impact of seasonality and scale variance on the forecasting
results can be effectively reduced.

In terms of local recurring patterns and temporal correlations, the normalized and deseasonalized data are first encoded
into images using three methods (or from three perspectives), and then CNNs and LSTM networks are used to extract deep-
seated features of the images to fully capture the local recurring patterns and temporal correlations. In this way, the impact
of changes in local recurrence patterns and temporal correlations on the forecasting results can be reduced. For these two
reasons, the impact of the COVID-19 on the forecasting results might be reduced to a certain extent. Therefore, the pro-
posed model can achieve a relatively high forecasting accuracy with the data relating to the period during the COVID-19
pandemic.

Conclusions

The main purpose of this study is to improve the accuracy of tourist demand forecasting by leveraging the advantages of deep
learning in image processing. To this end, a model based on deep learning with time series imaging is proposed, which consists of
three parts: sequence image generation, image feature extraction, and model training. The effectiveness of the proposed model is
verified by an experimental study using tourism demand data from two tourist attractions. The study makes four major
contributions.

First, a novel deep learning model for tourism demand forecasting is proposed. The proposed model simultaneously considers
the scale change in tourism demand, the seasonality change in tourism demand, and the local recurring patterns and temporary
relations in tourism demand. In tourism scenarios, the scale change in tourism demand is often highly related to some key events,
and the seasonality change of tourism demand is often highly related to the seasonal nature of tourism. Moreover, compared with
the demand in other fields, such as most types of product demand, tourism demand is affected by specific complex factors
(e.g., weather), which leads to the changes in the local recurring patterns and temporary relations of tourism demand. By normal-
izing the tourist demand data through the Holt-Winter model, the essential skeleton of the tourism demand data with respect to
scale and seasonality can be captured well. By encoding time series into images, various deep-seated features, which reflect the
local recurring patterns and temporary relations of tourism demand, embedded in the tourism demand data can be fully captured.
Therefore, the factors that affect tourism demand, i.e., key events, seasonal factors, and other complex factors that lead to local
small-scale changes in tourism demand, are considered at the same time in the proposed model, which ensures that it can capture
systematic changes in tourism demand and improve forecasting accuracy. The essence of social science is to consider the impact
of multi-level and multi-dimensional factors on human behavior as far as possible. Thus, capturing the impact of different factors
on tourism demand not only increases the accuracy of forecasts but also allows a better understanding of the factors that drive
changes in tourism demand from social science perspective. This enriches the methodology of deep learning in tourism demand
forecasting.
Table 9
The DM test results for one-step-ahead and multi-step-ahead forecasting using data for the period during the COVID-19 pandemic.

h Attractions Benchmark models

ARIMA SARIMA SVM NN CNN LSTM CNN-LSTM

1 Jiuzhaigou −10.43⁎⁎⁎ −7.84⁎⁎⁎ −9.77⁎⁎⁎ −8.05⁎⁎⁎ −7.57⁎⁎⁎ −10.68⁎⁎⁎ −7.70⁎⁎⁎

Mount Siguniang −3.80⁎⁎⁎ −3.70⁎⁎⁎ −3.96⁎⁎⁎ −3.88⁎⁎⁎ −3.90⁎⁎⁎ −4.32⁎⁎⁎ −3.71⁎⁎⁎

3 Jiuzhaigou −3.48⁎⁎⁎ −2.89⁎⁎⁎ −5.74⁎⁎⁎ −3.43⁎⁎⁎ −2.46⁎⁎ −7.00⁎⁎⁎ −2.53⁎⁎

Mount Siguniang −2.13⁎⁎ −2.03⁎⁎ −4.45⁎⁎⁎ −3.37⁎⁎⁎ −2.94⁎⁎⁎ −3.03⁎⁎⁎ −3.89⁎⁎⁎

Note: The ⁎⁎ and ⁎⁎⁎ indicate the statistical significance at the 5% and 1% levels, respectively.
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Second, this study presents a new idea: encoding tourism demand time series as “color” images by using GAF, MTF, and RP,
simultaneously. This is the first attempt to encode tourism demand data into image data. The study thus provides a good foun-
dation for the application to tourism demand forecasting of other deep learning techniques with good performance in image
processing.

Third, a combined deep learning model based on CNNs and LSTM is proposed for automatically mining the important features
embedded in the images. The combined model can give full play to the advantages of CNNs in image processing and LSTM in se-
quence data processing. This is a meaningful attempt to combine CNNs and LSTM to develop a tourism demand forecasting model.

Finally, the validity of the proposed model is verified by a systematic experimental study. The feasibility of the proposed model
is confirmed by analyses of data pertaining to the periods before and during the COVID-19 pandemic.

Additionally, with this proposed model, more accurate forecasts can be obtained. These can provide a scientific basis for
tourism-related decision-making, such as the planning of tourist attractions and transportation facilities, the adjustment of the
supply and demand of tourism products, the employment of temporary employees, and the pricing of tourism products.

The study's limitations may serve as directions for further investigations. The proposed model is univariate, and does not con-
sider other exogenous variables. Nonetheless, several exogenous variables could be used to improve the accuracy of the forecasts
(e.g., search engine data), and how to introduce other exogenous variables into the proposed model would be a promising direc-
tion for future research. Furthermore, compared with a shallow learning algorithm, the model proposed here proved to be com-
putationally intensive. Nevertheless, as technology advances, this limitation will be lessened.
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